Нейтронное излучение

Нейтронное излучение возникает при ядерных реакциях (в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах). Свободный нейтрон — это нестабильная, электрически нейтральная частица с временем жизни 885 сек.
При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма-квантов.
При упругих взаимодействиях возможна обычная ионизация вещества. Проникающая способность нейтронов очень велика по причине отсутствия заряда и, как следствие, слабого взаимодействия с веществом. Проникающая способность нейтронов зависит от их энергии и состава атомов вещества, с которыми они взаимодействуют. Слой половинного ослабления лёгких материалов для нейтронного излучения в несколько раз меньше, чем для тяжёлых. Тяжёлые материалы, например металлы, хуже ослабляют нейтронное излучение, чем гамма-излучение. Условно нейтроны в зависимости от кинетической энергии разделяются на быстрые (до 10 МэВ), сверхбыстрые, промежуточные, медленные и тепловые. Нейтронное излучение обладает большой проникающей способностью. Медленные и тепловые нейтроны вступают в ядерные реакции, в результате могут образовываться стабильные или радиоактивные изотопы.
Лучшими для защиты от нейтронного излучения являются водородсодержащие материалы. Обычно применяют воду, парафин, полиэтилен. Кроме того, нейтронное излучение хорошо поглощается бором, бериллием, кадмием, графитом. Поскольку нейтронное излучение сопровождается гамма-излучением, необходимо применять многослойные экраны из различных материалов: свинец-полиэтилен, сталь — вода и т. д. В ряде случаев для одновременного поглощения нейтронного и гамма-излучений применяют водные растворы гидроксидов тяжёлых металлов, например, железа Fe(OH)3.
Радиоактивное излучение, взаимодействуя с облучаемой средой, образует ионы разных знаков. Этот процесс называется ионизацией и обусловлен действием на облучаемую среду ядер атомов гелия (α-частицы), электронов и позитронов (β-частицы), а также незаряженных частиц (корпускулярное и нейтронное излучение), электромагнитного (γ-излучение), фотонного (характеристическое, тормозное и рентгеновское) и другого излучений. Ни один из этих видов радиоактивного излучения не воспринимается органами чувств человека.
Нейтронное излучение является потоком электронейтральных частиц ядра. Так называемое вторичное излучение нейтрона, когда он сталкивается с каким-либо ядром или электроном, оказывает сильное ионизирующее воздействие. Ослабление нейтронного излучения эффективно осуществляется на ядрах лёгких элементов, особенно водорода, а также на материалах, содержащих такие ядра — воде, парафине, полиэтилене и др.
В качестве защитного материала часто используют парафин, толщина которого для Ро—Be- и Ро—В-источников нейтронов будет примерно в 1,2 раза меньше, чем толщина водной защиты. Следует отметить, что нейтронное излучение радиоизотопных источников часто сопровождается γ-излучением, поэтому необходимо проверять, обеспечивает ли защита от нейтронов также защиту от γ-излучения. Если не обеспечивает, то необходимо вводить в защиту компоненты с высоким атомным номером (железо, свинец).
При внешнем облучении основную роль играют гамма- и нейтронное излучение. Альфа- и бета-частицы составляют главный поражающий фактор радиоактивных облаков, образуемых продуктами деления, остатками расщепляющегося материала и вторично активированными веществами при ядерном взрыве, однако эти частицы легко поглощаются одеждой и поверхностными слоями кожи. Под действием медленных нейтронов в организме создаётся наведенная радиоактивность, которая была обнаружена в костях и других тканях многих людей, умерших в Японии от лучевой болезни.
Нейтронная бомба отличается от «классических» видов ядерного оружия — атомной и водородной бомб — прежде всего мощностью. Она имеет мощность около 1 кт ТНТ, что в 20 раз меньше мощности бомбы, сброшенной на Хиросиму, и примерно в 1000 раз меньше больших (мегатонных) водородных бомб. Ударная волна и тепловое излучение, возникающие при взрыве нейтронной бомбы, в 10 раз слабее, чем при воздушном взрыве атомной бомбы типа «Хиросима». Так, взрыв нейтронной бомбы на высоте 100 м над землёй, вызовет разрушения только в радиусе 200—300 м. Губительное для всего живого действие оказывает излучение быстрых нейтронов, плотность потока которых при взрыве нейтронной бомбы в 14 раз выше, чем при взрыве «классических» ядерных бомб. Нейтроны убивают всё живое в радиусе 2,5 км. Поскольку нейтронное излучение создаёт короткоживущие радиоизотопы, к эпицентру взрыва нейтронной бомбы можно «безопасно» приблизиться — по утверждению её создателей — уже через 12 ч. Для сравнения укажем, что водородная бомба надолго заражает радиоактивными веществами территорию радиусом около 7 км.

Другие материалы по теме

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *